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Melting of Crystals in Two Dimensions
Urs Gasser,*[a] Christoph Eisenmann,[b] Georg Maret,[b] and Peter Keim[b]

1. Introduction

Like other phase transitions, the melting of crystals is a central
topic in condensed-matter physics and is of interest for the un-
derstanding of all crystalline materials. Freezing and melting
have been studied for centuries, which reflects their broad
relevance for many fields. Nevertheless, a detailed microscopic
understanding of the melting transition is lacking for most ma-
terials, although a microscopic theory for the melting of crys-
tals in two dimensions (2D) has been developed in the 1970s
by Kosterlitz, Thouless, Halperin, Nelson, and Young (KTHNY
theory).[1–6] It explains crystal melting by the dissociation of
pairs of defects that form close to the melting point.

One reason for the lack of microscopic theories for melting
is the difficulty in observing the transition of atomic or molecu-
lar materials on the microscopic scale of the constituents.
Therefore, colloidal suspensions are increasingly used as model
systems for the study of melting and other phase transitions,
since they show phase behavior that is analogous to that of
atomic materials and, furthermore, the size of colloidal parti-
cles and their interactions can be tailored for experiment.

Herein we focus on KTHNY theory and experiments that first
gave experimental evidence for its validity. This article is organ-
ized as follows. A general introduction of essential properties
of 2D crystals and the KTHNY theory are presented in Section 2
and early experiments on melting in 2D are presented in Sec-
tion 3. The colloidal model system from which conclusive evi-
dence for the KTHNY melting scenario has been obtained and
the corresponding experiments carried out with this system
are presented in Sections 4 and 5. A study of the interactions
between dislocations in 2D crystals is reviewed in Section 6
and the effects of an anisotropic particle-interaction imposed
by an external field are presented in Section 7.

2. 2D Crystals and KTHNY Theory

As for most crystal properties, the melting transition in 2D dif-
fers from that in 3D, because the reduced dimensionality pre-
vents the long-range translational order of 3D crystals. This is
due to long-wavelength fluctuations that are easily excited in
1D and 2D, while their energy diverges with the wavelength in

3D. This was first shown by Peierls for the magnetic XY-
system.[7] In a ferromagnetic material, the tilting of a spin by a
small angle df with respect to its neighbors takes an energy
(E / d�2). The excitation of a spin-wave with wavelength L
then requires an energy / Ldd�2 / Ldð2p=LÞ2 , where d2{1,2,3}
is the dimensionality. This energy diverges with L for d = 3,
while for d = 2 it is independent of L and for d = 1 it decreases
/ L�1. Therefore, the crystal does not exist for d = 1 and for
d = 2 its translational order is reduced to quasi-long-range.[6]

Even today, the melting transition of most materials is not
well understood, because theories explaining the transition on
a microscopic scale are not available. Furthermore, the mecha-
nism of melting depends on the details of the interactions be-
tween the particles forming the crystal lattice and defects re-
ducing the translational order of the crystal are expected to
play a mayor role. For example, as observed in 3D crystals of
microgel particles,[8] the melting transition was found to start
at grain boundaries. There are several theories for the melting
transition in 2D. The formation of grain boundaries[9–11] as well
as the condensation of dislocations[12] have been put forward
as possible mechanisms. In the 1970s, a theory based on the
formation of topological defects was developed by Kosterlitz,
Thouless, Halperin, Nelson, and Young (KTHNY theory).[1, 2, 4–6]

Therefore for the class of 2D crystals where this theory applies,
melting of 2D crystals is understood in more detail than in 3D.

While the melting of crystals is in general not understood in
detail on a microscopic scale, there is a microscopic theory for
a class of two-dimensional crystals, which is based on the for-
mation and unbinding of topological defects. Herein, we
review experimental work on a colloidal two-dimensional
model system with tunable interactions that has given the first

conclusive evidence for the validity of this theory on a micro-
scopic level. Furthermore, we show how the mechanism of
melting depends on the particle interaction and that a strong
anisotropy of the interaction leads to a changed melting sce-
nario.
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The applicability of the KTHNY theory depends on the interac-
tion between the particles. During recent years conclusive
proofs for its validity have been presented.

According to this theory, melting is based on the decoupling
of pairs of topological defects and it predicts the existence of
an intermediate equilibrium phase—the hexatic phase—be-
tween the crystal and the liquid state, which is specific to melt-
ing due to topological defects in 2D. The transitions from the
crystal to the hexatic phase and further to the liquid are pre-
dicted to be continuous. Bound pairs of dislocations can form
in the crystalline state as illustrated in Figure 1 A. Particles are

displaced such that two have seven instead of the normal six
nearest neighbors and for two of their neighbors the number
is reduced to five. A pair of five- and sevenfold coordinated
particles form a dislocation, which distorts the crystal lattice
and, therefore, is an improbable event in the crystal phase. An
isolated dislocation is characterized by the Burgers vector
giving the orientation of the dislocation (Figure 1 C). The trans-
lational order is decreased in the direction given by the Bur-
gers vector. In the case of a triangular crystal, a dislocation can
be viewed as two extra lattice lines that end at the fivefold co-
ordinated particle. As a consequence, it is a topological defect
that cannot form in the crystal from particle displacements in a
finite region, costing a finite amount of free energy and de-
stroying the translational order of the crystal. However, disloca-
tion pairs with antiparallel extra lattice lines correspond to a
structural change in a limited region of the crystal and can
form spontaneously if the involved free energy is not too high.
As the crystal lattice is distorted over an increasingly large
area, the elastic energy needed for this separation between
two dislocations grows the farther they are located from each
other. Dislocations, therefore, interact with each other attrac-
tively. The Hamiltonian of this interaction was originally devel-
oped for crystals in 3D[13] and, for dislocations in 2D, reduces
to the form given by Equation (1):

HD ¼ �
Ya2

0

4p
~bð~rÞ �~b0ð~r0Þ log

R
ac
�

~bð~rÞ �~R
h i

~b0ð~r0Þ �~R
h i

R2

8<
:

9=
;þ 2Ec

ð1Þ

with a0 the lattice constant and ac the dislocation core diame-
ter. ~b represents the Burgers vector of a dislocation and Ec is
the core energy of a dislocation,[14] which is introduced to ac-
count for the energy needed to create the core region of a dis-
location given by a five- and sevenfold coordinated particle.
This energy is not given by the first term of Equation (1),
which tends to diverge for R smaller than ac and, therefore, is
only valid when R is large enough. The coupling constant of
HD is essentially given by Young’s modulus Y measuring the ri-
gidity of the crystal lattice. HD is a cornerstone of KTHNY
theory, which determines the elastic constants of the crystal in
the presence of defects with a renormalization procedure.[2]

KTHNY predicts that 2D crystals melt due to the formation of
dislocation pairs in the crystalline state close below the melt-
ing temperature Tm and to the unbinding of such pairs at the
transition. The unbinding destroys the translational order and
involves a large increase of elastic free energy due to the
large-scale distortion involved in the formation of an isolated
dislocation. It can be shown that the elastic energy due to an
isolated dislocation or disclination is proportional to log r/ac for
large enough distances r from the center of the defect. Here,
ac is the core size of the defect, which is of the order of the
nearest-neighbor distance. Furthermore, the crystal becomes
mechanically weaker due to the appearance of isolated dislo-
cations—the value of the Young’s modulus Y is reduced and
KTHNY predicts that the dimensionless quantity Ya2

0=ðkBTÞ
reaches a value of 16p at melting. The translational order of
the crystal is measured by the correlation function given by
Equation (2):

GTð~r �~r0j jÞ ¼ e�i~G�ð~r�~r0 Þ
D E

ð2Þ

where ~G is a reciprocal lattice vector and the angled brackets
on the right hand side denote an average over particles at po-
sitions ~r and ~r0 with distance ~r �~r0j j. GTðrÞ / r�hT due to the
quasi-long-range translational order of the crystal and in the
hexatic as well as the liquid state it decays exponentially. An-
other parameter that is useful for localizing the melting transi-
tion is the Lindemann parameter gLðtÞ,[15] which measures the
mean-square deviation of a particle. It stays finite in the crystal,
but diverges in the liquid phase. Due to the quasi-long-range
order of 2D crystals, a modified Lindemann parameter has to
be used, which measures the particle displacement relative to
the nearest neighbors [Eq. (3)]:[16, 17]

gLðtÞ ¼ DrjðtÞ � Drjþ1ðtÞ
� �2� �

=ð2a2Þ ð3Þ

with DrjðtÞ ¼ rjðtÞ � rjð0Þ and a is the lattice constant. In 2D,
gLðtÞ is expected to reach a value of 0.033 upon melting.[17]

The melting transition at Tm reduces but does not entirely
destroy the orientational order, which is measured by the ori-
entational correlation function given by Equation (4)

Figure 1. A) A pair of dislocations at minimum distance, which can be
formed by displacing the particles on the lattice lines marked by the black
lines. l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2a0=2

p
and the distance of l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
7a0=2

p
between the sevenfold

coordinated particles corresponds to the maximum distance for the seven
particles to be neighbors. B) Burgers vectors~b and the vector ~R giving the
orientation of the dislocation pair are shown. C) The orientation of a disloca-
tion is given by the Burgers vector ~b, which is obtained from a track around
the dislocation with edges comprising a constant number of particles (gray
arrows). The lattice lines ending at the fivefold coordinated particle of the
dislocation are indicated by the black lines.
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G6ð~r �~r0j jÞ ¼ q6ð~rÞq6ð~r0Þh i ð4Þ

where [Eq. (5)]:

q6ð~rjÞ ¼
1
N

XN

K¼1

e�6iqjk ð5Þ

and where q6 measures the orientation of the N neighbors of
particle j. With the factor six in the exponent, q6j j can reach a
value of one in the hexagonal lattice, while defects and disor-
der reduce the value. The orientational order is reduced from
long-range to quasi-long-range due to the presence of the iso-
lated dislocations. Thus, G6ðrÞ approaches a constant value >0
in the crystal, decays algebraically in the hexatic (/ r�h6), and
exponentially in the liquid state. The second transition from
the hexatic to the liquid state happens at a higher temperature
Ti due to the unbinding of disclinations into isolated disclina-
tions. These are isolated five- or sevenfold coordinated parti-
cles, which are another type of topological defect and further
reduce the orientational order from quasi-long-range to short-
range (Figure 2). The orientational order corresponds to a stiff-

ness of the system with respect to rotational shear, which is
measured by Frank’s constant FA known from liquid crystals.[18]

In analogy to the interaction of dislocations, the coupling con-
stant of the interaction between disclinations is given by FA.
According to KTHNY, FA/(kBT) reaches a value of 72/p at T = Ti.

3. Early Experiments and Computer
Simulations

Conclusive evidence for the existence of the hexatic phase and
two continuous transitions for melting in 2D was missing for a
long time after the development of the KTHNY theory. The
main difficulties that were encountered in experiments and
simulations were related to the structural change from crystal
to liquid not being as clear as in 3D[19] and to difficulties in dis-
tinguishing between the hexatic phase and crystal–liquid coex-
istence, which is expected for a first-order transition. In early
computer simulations,[20–22] no clear conclusions about the exis-
tence of the hexatic phase could be reached due to the rela-
tively small number of simulated particles, which limited the
reliability of the results. However, recent computer simulations

did show the behavior that is expected from KTHNY theory.[23]

In many experiments investigating the 2D melting transition,
interactions between particles and a substrate defining the di-
mensionality of the system complicated clear conclusions
about the phase transition. The first observations of the hexat-
ic phase were presented by Murray and van Winkle[24] and later
by Tang et al. ,[25] who used a system of charge-stabilized poly-
styrene spheres confined between glass plates. In a 2D system
of particles interacting essentially like hard spheres, the hexatic
phase was observed but the transitions from crystal to hexatic
and from hexatic to liquid appeared to be of first order.[26] Dis-
locations and disclinations behaving as expected from KTHNY
were observed in a system of polystyrene particles with electric
dipole–dipole interactions.[27, 28] However, also in that work no
conclusive results for or against continuous melting transitions
were found. The first clear evidence for the validity of the
KTHNY melting scenario came from a colloidal model system
of super-paramagnetic particles, which is presented in the fol-
lowing section.[17, 29, 30]

4. 2D Colloidal Model System

Colloidal particles with a diameter of 4.5 mm are suspended in
water and are fixed by gravity to the water–air interface of a
hanging water droplet. An external magnetic field ~B is applied
perpendicular to or somewhat tilted by an angle f relative to
the particle plane. As the particles are super-paramagnetic due
to doping with Fe2O3 nanoparticles, the field induces a mag-
netic moment ~M = c~B in each particle, where c is the magnetic
susceptibility. The resulting dipole–dipole interaction is repul-
sive and / 1=r3 when the field is perpendicular to the particle
plane [Eq. (6)]:

uðrÞ ¼ m0ðcBÞ2
8p

1
r3

ð6Þ

An anisotropic interaction is obtained for a tilting f > 00 of
the field: Along an in-plane component of the magnetic field,
the interaction is less repulsive, which is reflected in the struc-
ture formed by the particles. The dipole–dipole interaction in
this system dominates all other interactions (charge, steric re-
pulsion), which therefore need not be taken into account.[31, 32]

Furthermore, the suspension contains a small amount of SDS
surfactant, which covers the particles and leads to complete
wetting. As a consequence, the deformation of the water-air
surface due to the particles is minimal and can also be neglect-
ed. The particles are observed by video microscopy and their
coordinates are determined in real time. ~2000 particles were
usually in the field of view with a size of 850� 650 mm2, while
the whole cell with a diameter of 8 mm contains roughly
3� 105 particles. The apparent size of the particles depends
on their height relative to the focal plane of the microscope
and is used to correct the flatness of the water droplet with a
precision of 1 mm by adding or removing small amounts of
water with a motorized syringe.[31] Thus, the particle density is
kept homogenous. For f ¼ 0� and at a low effective tempera-
ture, hexagonal crystals without defects can be obtained, as

Figure 2. Two disclinations formed by a five- and sevenfold coordinated par-
ticle as illustrated by the gray lines. The orientational order changes close to
disclinations as shown for two particles by the dark gray lines.
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shown in Figure 3. This indicates that the (magnetic) polydis-
persity of the particles is low.

As the interaction strength is controlled by the applied mag-
netic field, the effective temperature of the system can be
changed by varying B. The effective inverse system tempera-
ture is defined by Equation (7):

G ¼ Ep

kBT
¼ m0ðcBÞ2

8pkBT
13=2ð2 cos y sin yÞ3=2CMadelungðf;yÞ ð7Þ

where 1 is the area-density of the particles and [Eq. (8)]:

CMadelungðf;yÞ ¼
X

j

r2
ij � 3ðB̂ �~rijÞ2

r5
ij

ð8Þ

is the Madelung constant of the crystal structure formed by
the particles. The Madelung constant has to be taken into ac-
count when measurements with isotropic and anisotropic in-
teraction are compared, since the structure and the interaction
energy depend on the tilting angle f. y gives the distortion of
the crystal lattice as explained in Section 7. In work where only
isotropic interactions were considered, the Madelung constant
was not taken into account. For this reason, the effective tem-
peratures G given herein differ from those in previous publica-
tions.[17, 29, 30, 31, 33]

5. Verification of the KTHNY Melting Scenario

The system was equilibrated and prepared in a monocrystalline
state during several days before G was reduced to investigate
the melting transition. After each change of G, the system was
left to equilibrate for at least two hours, before particle coordi-
nates were determined. As apparent from the behavior of G6(r)
shown in Figure 4, a transition from long-range to quasi-long-
range orientational order is observed at Gm ¼ 48:5� 0:5, as
for lower G values the orientational correlation function G6(r)
does not approach a constant value at large r but is well de-
scribed by a power-law G6ðrÞ / r�h6. At the same effective tem-
perature the translational order changes from quasi-long-range
to short range.

The appearance of defects that cause the crystal to melt can
be followed by video microscopy. This supports the KTHNY
theory prediction that the crystal indeed melts due to the un-

binding of dislocation pairs that appear close to Gm in the crys-
talline state. In Figure 5 A bound dislocation pairs as well as a
few unbound dislocations are visible at G= 48 just below the
melting point.

As in the case of the melting transition, the transition from
the hexatic to the isotropic fluid phase is also found from the
behavior of G6(r). According to KTHNY, the quasi-long-range
orientational order is lost in the fluid state and G6(r) decays ex-
ponentially. As shown in Figure 4, this transition is found at
G i ¼ 45:7� 0:5, where the exponent of the quasi-long-range
decay reaches a value h6 ¼ 1=4 as expected from KTHNY
theory.[17] This transition is caused by the appearance of isolat-
ed disclinations (five- or sevenfold coordinated particles),

Figure 3. Microscopy image of a 2D colloidal crystal with triangular lattice
and isotropic dipole–dipole repulsion between the particles.

Figure 4. Orientational correlation function G6(r) for different effective tem-
peratures G. Blue refers to the crystalline, green to the hexatic, and red to
the liquid state. The oscillations reflect the arrangement of the particles in
shells around a central particle at r = 0. Reprinted with permission from
ref. [30] . Copyright 2007 by the American Physical Society.

Figure 5. Measured particle configurations A) just below the melting transi-
tion at G= 48 and B) in the liquid state. Five- and sevenfold coordinated par-
ticles are shown by red and green dots, respectively, while grey dots repre-
sent particles with six neighbors. Bound and unbound dislocations are visi-
ble in (A), while larger clusters of five- and sevenfold coordinated particles
dominate in (B).
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which are observed to appear at G i in the video microscopy
experiment (Figure 5 B).

KTHNY predicts critical values for the elastic constants at the
transitions, which do not depend on the nature of the 2D
system: Yma2

0=ðkBTÞ ¼ 16=p and FA;i=ðkBTÞ ¼ 72=p. Therefore, a
convincing proof for the KTHNY melting scenario is to show
that these critical values are indeed reached at the transitions.
FA can be obtained from the exponent h6ðGÞ in the hexatic
phase and Y, in principle, from the exponent of hTðGÞ in the
crystalline phase. Since reciprocal lattice vectors for GT(r)
[Eq. (2)] are not easily determined in 2D crystals,[34] a method
based on the dispersion relation of the crystal normal modes
was used.[35] The Young’s modulus can be obtained from the
q! 0 behavior of the longitudinal and transversal normal
modes. Accordingly, careful measurements of G6(r) that were
carried out as explained above[30] and measurements of the
crystal normal modes[35] have been used to determine the elas-
tic constants near the phase transitions. As shown in Figure 6,

the Frank constant shows the expected behavior in the hexatic
phase: As h6, it diverges at Gm, because the orientational order
becomes long-range. More importantly, the value of FA ap-
proaches 72/p near G i and the experiment indicates a fast
drop of FA for G < G i, where FA is expected to vanish. In the
crystal state, Y is found to follow the behavior expected from
KTHNY theory (Figure 7).[33, 36] Moreover, the transitions and be-
havior of both G6(r) and GT(r) have been found to occur at the
same G for both ‘heating’ and ‘cooling’ by varying the magnet-
ic field: No hysteresis is observed, if the system is cooled and
heated slowly to keep it in thermal equilibrium.[37] This corrob-
orates the presence of two continuous transitions. The melting
transition is, thus, identified from the behavior of GT(r) on the
side of the crystal phase (high-G side) and from the behavior
of G6(r) on the side of the hexatic phase (low-G side). Both
methods agree very well and yield the value Gm ¼ 48:5� 1:5.

6. Interaction between Dislocations

From the apparent validity of KTHNY theory as presented in
the preceding section, it is expected that the Hamiltonian HD

describing the interaction between dislocations [Eq. (1)] is valid
for the defects that are observed in the colloidal model
system. However, HD results from a continuum approximation
for the crystalline state and its validity on the microscopic
scale of nearest neighbor particles is not evident. The behavior
of dislocations found in experiments and Monte Carlo simula-
tions of the crystalline state were, therefore, compared with
the expectation from HD.[14] Dislocations were identified using
the Voronoi construction for measured particle coordinates,
which yields the coordination number for each particle. Dislo-
cations are found by looking for two neighboring five- and
sevenfold coordinated particles that have sixfold coordinated
neighbors. For a quantitative analysis of dislocations, the
center is defined as the mid-point of the vector~r57 joining the
five- and the sevenfold coordinated particles. The Burgers
vector ~b is oriented close to perpendicular to ~r57 (see Fig-
ure 1 B).

The distance dependence of HD was studied for the case of
isolated dislocations with antiparallel Burgers vectors ~b1 ¼ �~b2,
for which the interaction Hamiltonian has the form given by
Equation (9):

bHD ¼ b
Ya2

0

4p
log

R
ac
þ 0:788

� �
ð9Þ

Because the interaction is attractive, most such dislocations
are located at the minimal distance R/a0 = 1. The number distri-
bution E(R) of dislocations at distance R must be normalized
by the number of possible dislocation pairs for each distance R
to obtain the probability P(R) of formation for a pair at dis-
tance R. Since bHD ¼ � log PðRÞ, a direct comparison of experi-
ment and theory is obtained, as shown in Figure 8. The good
agreement at several values of G in the crystalline phase is
only troubled by the relatively small deviations at R=a0 � 2,

Figure 6. Frank’s constant FA as a function of effective inverse temperature G

(*). The curve represents a fit to the measured data and the horizontal
dashed line shows the value of 72/p, which is predicted by KTHNY theory
for the transition from hexatic to isotropic liquid. Reprinted with permission
from ref. [30] . Copyright 2007 by the American Physical Society.

Figure 7. Young’s modulus Y as a function of effective inverse temperature G

obtained from experiment (*) and Monte Carlo simulation (g).[44] The value
of 16p that KTHNY theory predicts for the melting transition is marked by
the horizontal dashed line; the lines represent the behavior expected for
T = 0 (a) and from KTHNY theory (c). Reprinted with permission from
ref. [44] . Copyright 2005 by Institute of Physics Publishing.
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which is due to several factors. Some clusters of dislocations
and higher complexions are erroneously not excluded, many-
body interactions between close by dislocations are not taken
into account, and some dislocations appear due to artifacts
such as too small or too big colloidal particles. Furthermore,
the T = 0 K value of Y is used. These factors all lead to a seem-
ingly higher probability for finding two dislocations at some
distance R.

The G-dependence was studied for dislocation pairs with an-
tiparallel Burgers vectors ~b1 ¼ �~b2 at the minimum distance R/
a0 = 1. HD takes the form shown in Equation (9) with the value
for R given above and Ya2

0b ¼ 1:258G . A comparison of experi-
ments, simulations, and theory is shown in Figure 9, where ef-
fective inverse temperatures in the G-range from deep in the
crystalline phase down to below the melting point
Gm ¼ 48:5� 0:5 are shown. The agreement is excellent even
below the melting point, which is outside of the range of val-
idity of HD. However below Gm, HD should be compared with
the sum of isolated dislocations and of disclination pairs that
appear close to the transition.

A deviation between HD and the results from experiments
and MC simulations is found for the angular dependence of
the dislocation interaction. The comparison shown in Figure 10

was determined for dislocations at minimum distance and anti-
parallel Burgers vectors at G = 55. This difference between the
distribution PðqÞ ¼ exp Ya2

0b cos2 q=ð4pÞ
� �

expected from
theory and the experimental results is due to the microscopic
scale of the experimental data, which is not included in the
continuum approach of the theory. The q-distribution from ex-
periment is asymmetric, because a negative q-value corre-
sponds to the sevenfold coordinated particles of the pair
moving further away from each other, which leads to the anni-
hilation of the pair as can be seen in Figure 1 B.

As the Hamiltonian HD is one of the starting points of
KTHNY theory, its generally good agreement with experimental
results is a further corroboration of the melting behavior ac-
cording to KTHNY in the colloidal model system studied.

7. Anisotropic Interaction

The evidence for crystal melting according to KTHNY theory as
presented in the preceding sections raises the question wheth-
er this melting scenario is robust with respect to changes of
the system. This has been studied for the case of an externally
imposed anisotropy of the particle interaction, which is ob-
tained by tilting the external magnetic field away from the per-
pendicular direction. The effect on the melting behavior of the
crystal can be expected to be important, since the crystalline
structure and the dynamics of the particles are observed to
change. Therefore, it can be expected that the phase behavior
is also affected and whether new pathways for melting pre-
empt the KTHNY scenario should be expected to depend on
the details of the anisotropy. The case of an anisotropic inter-
action due to elongated particles was studied by Ostlund, Hal-
perin, Toner, and Nelson.[38, 39] They found that in the presence
of a symmetry axis, such as due to anisotropy, there are two
types of dislocations—one type with Burgers vector along the
symmetry axis (type I) and another with Burgers vector at an

Figure 8. Dependence of the dislocation interaction on distance R for the
case of antiparallel Burgers vectors. Experiment: G = 55.0 (+), G= 53.4 (� ),
G = 51.8 (^) ; simulation: G= 48.6 (&), G = 51.0 (*), G = 55.7 (~), G= 59.7 (!) ;
(c): prediction according to HD [Eq. (1)] . Reprinted with permission from
ref. [14] . Copyright 2005 by the American Physical Society.

Figure 9. G-dependence of the dislocation interaction for dislocations at
minimum distance R/a0 = 1 and antiparallel Burgers vectors, determined by
experiment (*) and simulation (~). The behavior expected from HD [Eq. (1)]
is shown by the solid line. The melting point Gm is indicated by the arrow.
Reprinted with permission from ref. [14] . Copyright 2005 by the American
Physical Society.

Figure 10. Distribution of the angle q between Burgers vector~b and the
vector ~R joining the two dislocations in a pair at minimum distance R = a0

and with antiparallel Burgers vectors~b1 ¼ �~b2. The line shows the distribu-
tion expected from the Hamiltonian HD [Eq. (1)] . Reprinted with permission
from ref. [14] . Copyright 2005 by the American Physical Society.
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angle �� from the axis (type II). Depending on the nature of
the anisotropy, they predicted that one type of dislocation
would unbind first. For the preferred unbinding of type I they
found that the crystal should melt into a 2D smectic phase.

Herein, we review the effect of a uniform, externally im-
posed anisotropy, which is obtained in the colloidal model
system introduced in Section 4 by tilting the external magnetic
field by an angle f away from the direction perpendicular to
the particle plane. The interaction between the particles be-
comes anisotropic [Eq. (10)]:[36]

uðrÞ ¼ m0ðcBÞ2
8p

ð1� 3 sin2 f cos2 qÞ
r3

ð10Þ

where cos q ¼~r �~Bk= ~rj j ~Bk
			
			


 �
. The tilting of the field reduces

the repulsion along the in-plane component ~Bk of the magnet-
ic field and the particles can move closer to each other along
this direction. For tilting angles f � 10� the anisotropy is
strong enough to orient the crystal. As shown in Figure 11 B,
the unit cell is no longer triangular but becomes oblique or,

equivalently, centered rectangular with lattice constants b and
c and each particle has two nearest neighbors that lie in the
direction of ~Bk and four second nearest neighbors are situated
on adjacent lattice lines oriented along ~Bk. The ratio b/c of the
lattice constants was measured for various tilting angles f[40]

and agrees very well with the expectation from harmonic lat-
tice theory.[41]

The behavior of the Lindemann parameter [Eq. (3)] and the
correlation functions GT(r) and G6(r) [Eqs. (2) and (4)] can be
compared directly to the case of isotropic interaction (f ¼ 00)
by rescaling the lattice constant b shown in Figure 11 B such
that the triangular lattice is recovered.

7.1. Weak Anisotropy

For tilting angles f < 22�, a rescaling of b to the isotropic case
shows that the behavior of the Lindemann parameter is un-
changed. Without rescaling the particle deviations are larger in
the direction perpendicular to ~Bk, as expected from harmonic
lattice theory.[42] In analogy to the behavior of gLðtÞ, the melt-
ing transition keeps the same character : As shown in

Figure 12, the effective melting temperature remains almost
unchanged for tilting angles f < 22�. The crystal melts into
the quasi-hexatic phase, which has essentially the same prop-

erties as the hexatic, but due to the distortion of the crystal
lattice the orientational symmetry is not strictly sixfold as the
word ‘hexatic’ would suggest. The anisotropy causes G i to de-
crease considerably (Figure 12). This stabilization of the quasi-
hexatic phase is caused by the tilted external field, which im-
poses a preferred direction and strengthens the orientational
order.

7.2. Strong Anisotropy

For tilting angles f � 22�, the behavior of the Lindemann pa-
rameter is no longer explained by a rescaling of the lattice
constant b. The deviations along ~Bk become larger than in the
perpendicular direction.[41] This cross-over of gL;kðtÞ and gL;?ðtÞ
reflects the reduced dipole–dipole repulsion along the in-plane
component of the magnetic field. The fast increase of gL;kðtÞ
with f indicates the proximity of a soft mode of lattice vibra-
tions in this direction.[42] The larger fluctuations along the par-
allel direction lead to an enhanced formation of dislocations,
which are oriented such that they reduce the translational
order along ~Bk. Indeed, for f > 22� the crystal is destabilized
considerably and the melting behavior as reflected by GT(r) be-
comes anisotropic.[43] The crystal melts just along the parallel
direction at much higher inverse temperatures in the range
72<G<82. Accordingly, GT(r) shows an exponential decay
along ~Bk and an algebraic decay due to quasi-long-range order
along ~Bk (Figure 13). The Lindemann parameter gLðtÞ shows
the same behavior. It approaches a constant value for fluctua-
tions perpendicular ~Bk but diverges for fluctuations along the
~Bk-direction. As expected from refs. [38, 39] , the system melts
into a columnar phase (see Figure 12) and the type II disloca-
tions with the Burgers vector oriented at a finite angle with re-
spect to~Bk are strongly suppressed.[43] Furthermore, dislocation
pairs formed by dislocations with the Burgers vector perpen-
dicular to ~Bk are completely suppressed. This reflects the

Figure 11. A) Hexagonal lattice with lattice constant a0 for isotropic interac-
tion with the external magnetic field ~B perpendicular to the particle plane.
The primitive unit cell is highlighted by the grey area. B) Rectangular lattice
as observed for anisotropic interaction with an in-plane magnetic compo-
nent ~Bk . The unit cell containing two particles is shown by the grey area.

Figure 12. Phase diagram of a 2D system of particles with magnetic dipole–
dipole interaction. Inverse temperature G is shown on the y-axis and the ani-
sotropy of the interaction represented by the tilting angle of the external
magnetic field is shown on the x-axis.
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strong localization of the particles in columns due to the
strong repulsion perpendicular to ~Bk. Thus, two particles be-
longing to adjacent columns cannot come close enough to
become the sevenfold coordinated particles of a dislocation
pair.

8. Conclusions

An experimental confirmation for the KTHNY theory for crystal
melting in 2D has been found with the presented colloidal
model system with repulsive magnetic dipole–dipole interac-
tion. Thus, KTHNY is expected to be relevant for other 2D sys-
tems in which these underlying topological defects can form.
However, clear criteria for this class of 2D crystals are currently
missing. The core energy of dislocations plays an essential role
for this question, as it must be low enough to allow their
spontaneous appearance. Furthermore, the presented experi-
ments indicate that KTHNY theory is robust with respect to a
transition from isotropic to anisotropic interaction as long as
dislocations with all orientations can form. Upon the suppres-
sion of a type of dislocation the KTHNY scenario changes. The
crystal has been found to melt into a columnar instead of the
hexatic phase for sufficiently strong anisotropy of the interac-
tion.
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Figure 13. Translational correlation function for a reciprocal lattice vector
parallel (� ) and perpendicular (*) to~Bk obtained at a tilting f ¼ 24:2� and
G = 76. The line shows the decay / r�1=3 as expected at melting with iso-
tropic interaction. Reprinted with permission from ref. [43] . Copyright 2004
by the American Physical Society.
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